Projekte

Aktuelle Projekte

breath gas analysis of tuberculosis or lung cancer patients
Laufzeit: 01.12.2016 bis 31.12.2024

Lung tuberculosis is an infection of the lungs which had been assumed to be wiped out in modern developed countries. However, there is again a rising number of cases. In addition, due tot he large number of refugees there are additional needs for characterising possible infections early. This is especially true as tuberculosis is still one oft he most often infectual diseases worldwide. X-ray imaging is at least for young patients not an easy to justify procedure.  The gold standard for the diagnosis of tuberculosis is the cultural biology prove of Mycobacterium tuberculosis. This is quite a long and complicated procedure. It would be desirable to have a fast and easy diagnostic tool instead, because that could foster the in principle very effective therapy approaches, if applied in early stages. Since we know from earlier studies that breath gas analysis allows the detection of changes in the metabolism and especially those caused by infections we investigate the feasiblity to diagnose tuberculosis with breath gas analysis.

Projekt im Forschungsportal ansehen

Interventional molecular imaging
Laufzeit: 01.12.2016 bis 31.12.2024

Molecular imaging, such as Positron Emission Tomography has an important

impact in diagnostic, while it started only recently to be integrated into interventional procedures. Interventional molecular imaging
can provide guidance to localize a target; provide in-room, post-therapy assessment; monitoring of targeted therapeutics delivery.
Interventional molecular imaging is generally based on commercial whole-body PET/CT scanners, which limit the possibility of an entire surgical guidance
procedure, while on-site integration of dedicated devices would definitely benefit the entire guidance.
This project focuses on the study of a dedicated detector, and the potential impact of its integration in brain interventional procedures.

Projekt im Forschungsportal ansehen

i-Violin:Implementing verifiable oncological imaging by quality assurance and optimisation
Laufzeit: 01.09.2022 bis 31.08.2024

Ein internationales Forschungsteam wird europaweit gültige Qualitäts- und Sicherheitsstandards für die Anwendung ionisierender Strahlung bei der Diagnose und Behandlung von Krebserkrankungen entwickeln. Dazu wird eine europäische Datenbank mit patientenspezifischen Diagnose- und Therapiedaten sowie Behandlungsempfehlungen aufgebaut. Diese Datenbank soll über Ländergrenzen hinweg vergleichbare Standards bei der Anwendung ionisierender Strahlen sicherstellen und den Medizinern helfen, die Strahlenbelastung von Patientinnen und Patienten auf ein sinnvolles Maß zu reduzieren, individuell zu optimieren und somit die Sicherheit und Qualität in der Versorgung von Tumorerkrankten europaweit verbessern.
Im Zentrum des Forschungsprojektes steht die Frage, inwiefern die Qualität der diagnostischen Bildgebung, zum Beispiel von Computertomografien, mit der verabreichten Dosis und dem Strahlentherapieerfolg in einem direkten Zusammenhang steht und so optimiert werden kann, dass die Behandlung des Patienten mit möglichst geringen Nebenwirkungen und möglichst wenigen langfristigen negativen Effekten für den einzelnen Patienten durchgeführt werden kann.
Um dieses Ziel zu erreichen, wird in einem ersten Schritt eine in Vorprojekten entwickelte Software zur Bewertung der Bildqualität von Computertomografien in 5 beteiligten europäischen Krankenhäusern eingeführt. Später sollen die u.a. in Magdeburg entwickelten Verfahren in möglichst vielen europäischen Kliniken zum Einsatz kommen.
Das Projekt i-Violin wird gefördert durch das EU4Health Gesundheitsprogramm und unterstützt das Ziel des europäischen Plans, zur Krebsbekämpfung (Europe’s Beating Cancer Plan) hohe Standards in der Krebsbehandlung sicherzustellen. Außerdem sind es der SAMIRA-Aktionplan sowie die strategische Forschungsagenda von ESR EuroSafe Imaging und EURAMED Programme, die sich in i-Violin wiederfinden. Die Partnereinrichtungen sind das European Institute for Biomedical Imaging Research, die Otto-von-Guericke-Universität Magdeburg, die Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, das Polytechnic Institute of Coimbra in Portugal, die University of Crete, Greece, das Clinical Hospital Dubrava in Kroatien, die University Medical Centre Ljubljana, Slowenien, KU Leuven in Belgien, das University College Dublin, und die National University of Ireland Dublin in Irland sowie die Finnish Radiation and Nuclear Safety Authority in Finnland.

Projekt im Forschungsportal ansehen

SINFONIA -Radiation risk appraisal for detrimental effects from medical exposure during management of patients with lymphoma or brain tumour
Laufzeit: 01.09.2020 bis 31.08.2024

The overall objective of the 4-year SINFONIA project is to develop novel research methodologies and tools that will provide a comprehensive appraisal of the risk for detrimental effects to patients, workers, the public and the environment from radiation exposure during management of patients suspected or diagnosed with lymphoma and brain tumours.

SINFONIA will develop novel tools and methodologies that will be demonstrated on two suitable clinical examples i.e. lymphoma and brain tumours. However, SINFONIA research outcomes are not confined to the two specific types of diseases. Some of the procedures performed on lymphoma and brain tumour patients are also carried out on patients with other diseases and SINFONIA radiation dose and risk appraisal methods developed for these two groups of patients will be applicable to other diseases

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

GEPRIS - Signaturen aus der Atemluft bei der Depression: Stressbezogene Veränderungen im Ausatemsignal während der Frühphase des Krankheitsmanagement
Laufzeit: 01.03.2021 bis 29.02.2024

Etwa ein Drittel der Patienten mit einer depressiven Störung (MDD) spricht nicht auf mindestens zwei verschiedene Therapien mit Antidepressiva an. Diese Betroffenen bräuchten so früh wie möglich andere Behandlungsoptionen. Leider gibt es derzeit keine nicht-invasiven, leicht und häufig anwendbaren Biomarker, die die Diagnose einer unipolaren depressiven Störung (MDD) erleichtern oder die Entscheidungsfindung zur Therapiewahl unterstützen könnten. Da die Lunge als Gasaustauscher zwischen der inneren und äußeren Umgebung fungiert, könnten die Auswirkungen der MDD leicht durch die Analyse des ausgeatmeten Atems beurteilt werden. Solche Verfahren werden bereits beim Alkoholtest und beim Diabetes mellitus erfolgreich eingesetzt. In einer Pilotstudie an 25 Patienten mit MDD und 25 gesunden Probanden konnten wir Marker finden, die sich signifikant zwischen den Gruppen unterscheiden und die eine gute Klassifikation mit einer Genauigkeit von über 80 % in Test- und Validierungssamples ergaben. Ziel der Studie ist es Signaturen aus der Ausatemluft zu identifizieren, die eine depressive Episode bei MDD und vom gesunden Zustand unterscheiden. Außerdem soll untersucht werden, durch welche Faktoren (Behandlung, Ernährung, Umwelt) diese Signaturen beeinflusst werden, ob die identifizierten Signaturen Hinweise auf den Krankheitsverlauf geben können und ob sie Parallelen zur Dysregulation der Kortisolantwort während des Aufwachens, die bei der Depression gezeigt wurde, aufweisen. Es werden in einem Testsample 80 Patienten mit MDD nach DSM-V (davon 40 aktuell frei von antidepressiver medikamentöser Behandlung und 40 mit laufender antidepressiver Behandlung) und 80 gesunde Probanden eingeschlossen. Des Weiteren werden in einem Bestätigungssample 40 Patienten mit MDD (davon 20 derzeit frei von antidepressiver medikamentöser Behandlung und 20 mit laufender antidepressiver Behandlung) und 40 gesunde Probanden rekrutiert. Die klinischen Untersuchungen und die Atemluftmessungen werden nach 14 und 28 Tagen wiederholt. Die Analyse der Atemluft erfolgt mittels Protonentransferreaktionsmassenspektrometrie (PTR-TOF-MS). Zusätzlich wird eine Bestimmung der dahinterliegenden Substanzen mit GC-GC-TOF-MS durchgeführt. Die Umgebungsbedingungen und die Sammelmethode mittels "Tedlar"-Beuteln werden kontrolliert. Dadurch wollen wir einen Marker entwickeln mit dem die Diagnose Depression unterstützt werden könnte, wobei dies danach in einer klinischen Biomarkerstudie gezeigt werden muss.

Projekt im Forschungsportal ansehen

KI-INSPIRE: Verbund - KI: Künstliche Intelligenz für den innovativen nachhaltigen Strahlenschutz von Patienten in interventionellen radiologischen Einsatzgebieten
Laufzeit: 01.12.2020 bis 31.12.2023

Auf dem Gebiet der Medizinphysik und Medizintechnik ist die Nutzung von KI-basierten Verfahren besonders im Bereich des Strahlenschutzes und hier insbesondere in der medizinischen Bildgebung, die für nahezu 100% der zivilisatorischen Strahlenexposition von 1,9 mSv pro Jahr verantwortlich ist [Unterrichtung durch die Bundesregierung: Umweltradioaktivität und Strahlenbelastung im Jahr 2013], äußerst vielversprechend. Dort ließe sich dank der neuen disruptiven Technologien von KI ein enormes Dosiseinsparpotential realisieren.
Das Ziel des Verbundvorhabens ist daher die Entwicklung, Implementierung und Erprobung von KI-Verfahren zur signifikanten Reduktion der Strahlendosis in der medizinischen Bildgebung mit ionisierender Strahlung. Dies soll durch Verbesserung der Bildqualität und des Strahlenschutzes für medizinische Bildgebungsverfahren basierend auf ionisierender Strahlung geschehen.
Um eine ganzheitliche/holistische und systematische Betrachtungsweise zu ermöglichen, adressiert das Projektvorhaben, die interventionelle Bildgebung bei der sowohl diagnostische als auch therapeutische Ziele mit Hilfe von Computertomografie, Angiographie und Nuklearmedizin realisiert werden.
Ein besonderer Fokus liegt dabei auf der Entwicklung und Etablierung intelligenter Algorithmen für (I) die Dosisreduktion, (II) die Verbesserung der Bildqualität und (III) Reduktion der Bewegungsartefakte sowie die (IV) interventionelle Charakterisierung von Gewebe bei medizinischen Strahlenanwendungen - Anwendungen, die alle dem Strahlenschutz zuzuordnen sind. Dabei steht die Erhöhung der Sicherheit für Patienten und medizinisches Personal im Vordergrund, so dass ein wertvoller Beitrag zur positiven Wahrnehmung von KI in der breiten Bevölkerung geleistet werden kann.

Projekt im Forschungsportal ansehen

EURAMED rocc-n-roll: Erarbeitung einer europäischen Forschungsagenda für die medizinische Anwendung ionisierender Strahlung
Laufzeit: 01.09.2020 bis 31.08.2023

Radiation protection in medical applications is well established throughout Europe, however still facing challenges like large differences in procedures between countries, but even within a country or even within a hospital. In addition, new promising approaches like new technologies as e.g. artificial intelligence or personalized medicine approaches need to be investigated regarding their potential for medical radiation protection. The European Alliance for Medical Radiation Protection Research (EURAMED) platform has been found to promote such research in the EC research programme . Together with five other platforms research in the field of radiation protection is promoted basically in the EURATOM framework. Acknowledging the importance of medical applications as the largest man-made source of exposure and the great possibilities of applying ionizing radiation in medicine the EURATOM programme has launched a call for a coordination and support action to develop a strategic research agenda (SRA) on medical applications of ionizing radiation in general allowing to improve links to other programs like HEALTH or DIGITALIZATION.

A consortium called EURAMED rocc-n-roll has been put together to fulfil the task of developing such an SRA partially based on the existing EURAMED SRA on medical radiation protection. In addition it will also develop a roadmap describing how this research agenda can be implemented. An interlink document showing the potential distributions of the different European research programmes to such defined approaches will also be developed. All these documents need to be derived based on a broad consensus of all stakeholders especially also including the patients’ perspective. Therefore, EURAMED rocc-n-roll is based on a series of workshops and writing panels. The workshops will allow contributions by interested stakeholders in person or through members of the consortium.
OvGU is serving as the scientific coordinator of the project.

Projekt im Forschungsportal ansehen

breath gas analysis in patients suffering from depression
Laufzeit: 01.01.2019 bis 31.12.2022

According to Smith (Smith, 2011) brain disorders cost Europe almost €800 billion (US$1 trillion) a year - more than cancer, cardiovascular disease and diabetes together.

Major depressive disorders (MDD) can effectively be treated with psychotherapy and/or antidepressants. However, still one third of patients do not respond and would need different treatment options as early as possible (Kennedy and Giacobbe, 2007).
A possible new method for early detection could be breath gas analysis that already was implemented for alcohol tests and recently was found to be clinical applicability e.g. for diabetes detection. Because the lungs act as a gas exchanger between the internal system and external environment, the internal system in disorders like MDD may be assessed through the analysis of exhaled breath especially with respect to stress induced reactions.

Projekt im Forschungsportal ansehen

X-ray fluorescence and corresponding anatomical imaging
Laufzeit: 01.09.2014 bis 31.12.2022

Molecular imaging today is either limited by systems that provide high resolution spatially and temporarilly but very poor sensitivity to contrast media or molecular markers (CT, MRI) or by such systems that provide high sensitivity but very poor spatial and especially temporal resolution (SPECT, PET). X-ray fluorescence would be an option to overcome such limitations, because in principle it could offer fast scanning, high spatial resolution and a good sensitivity. To gain such efficient approaches one needs scanning geometries with fast steerable X-ray sources which should be adjustable in their beam energy. Such imaging method would on the fly generate an anaomical image as well. We simulate such systems and try to set up demonstration experiments with our cooperation partners.

Projekt im Forschungsportal ansehen

Advanced X-ray based imaging technologies
Laufzeit: 01.09.2019 bis 31.08.2022

We build systems for dark field and absorption based X-ray imaging systems using for example scanning beam technologies, develop and characterise corresponding detector systems and imaging geometries. The total systems for both different types of imaging systems will be simulated and transferred into prototypes.

Projekt im Forschungsportal ansehen

Biokinetic von Radiopharmaceutika
Laufzeit: 01.06.2019 bis 30.06.2022

Zur Optimierung des Strahlenschutzes für den Patienten und für eine optimale Bildaufnahme ist es wesentlich die Verteilung der Radiopharmaka im Körper über die Zeit zu kennen. Da dies nicht trivial für jeden Patienten zu messen ist, werden in Kooperation mit Kliniken nuklearmedizinische Daten im Zeitverlauf aufgenommen. Damit werden dynamische Kompartmentmodelle erstellt und die Parameter bestimmt. Die Unsicherheit in der Bestimmung der Parameter und die Sensitivität des Modells für die einzelnen Parameter werden untersucht, um festzustellen, welche Einflußparameter besonders bedeutsam sind. Im Anschluß können reale Patientendaten mit den Modellvorhersagen verglichen werden, um optimierte Zeitschemata für die Bildgebung und optimierte Therapieparameter zu finden bzw. die Dosimetrie für den Patienten zu verbessern.

Projekt im Forschungsportal ansehen

Breast-CT basierend auf CT dOr
Laufzeit: 01.06.2016 bis 31.12.2021

A newly designed especially developed breast CT system based on the newly developed CT d Or geometry and in this case based on an electron gun with a dedicated delineation system and a special target ring had been set-up. This would allow very fast scanning and a larger covering of the breast volume (closer tot he breast wall) than current breast CT systems, from which very few exist. However, the new geometry requires a very new approach for a detector system because it has tob e separated in columns and the electronics need tob e conserved and should not cover the source positions. We simulate the possible detector design, develop a prototype electronic system and a prototype detector

Projekt im Forschungsportal ansehen

Darkfield Imaging for breast tissue
Laufzeit: 01.09.2016 bis 30.06.2021

Darkfield imaging relies on differences in the scatter component of the x-ray distribution due to differences instructural conditions oft he tissue. In many approaches this component is a side-product of phase contrast imaging. Since phase contrast imaging is strongly dependent on movements oft he patient and it will be dose intensive for applications in the human tissue characterisation for in vivo imaging, we are concentrating on darkfield X-ray imaging directly. A special system for dose-optimised imaging will be developed. We focus on breast imaging within the current project.

Projekt im Forschungsportal ansehen

Pharmakokinetik mit molekularer Bildgebung
Laufzeit: 01.05.2019 bis 30.06.2021

Neue molekulare Bildgebungstechniken basierend auf monoenergetischen Röntgenquellen und basierend darauf zum Beispiel auf Röntgenfluoreszenzbildgebung erlauben das Nachverfolgen von Nanopartikeln im Körpern. Koppelt man derartige Nanopartikel an Pharmaka kann man deren Aufenthalt zu verschiedenen Zeitpunkten im Körper nachverfolgen und so die optimale Wirksamkeit der Pharmaka sicher stellen. Die Bildgebung ist noch nicht komplett verfügbar, so dass in diesem Projekt die spezielle Rekonstruktion erarbeitet werden soll, um 3D Darstellungen zu ermöglichen. Zudem müssen die Daten in kinetische Modelle eingepasst werden, um so Vorhersagen über die wahrscheinlichsten Verläufe der Anreicherungen im Körper treffen zu können.

Projekt im Forschungsportal ansehen

image quality analysis on patient images - EU Projekt MEDIRAD
Laufzeit: 01.06.2017 bis 31.05.2021

Medical imaging quality description is today either based on investigating with objective physical mathematical methods images of certain test objects or on subjective reader evaluations. The objective methods can be either based on methods applicable in the Fourier domain or those in the spatial domain. While analytics in the Fourier domain are often quite easy they are often difficult to interpret in terms of provided diagnostic performance. Image quality analysis in the spatial domain is on the other hand typically limited to very specific tasks and complicated to perform. Human reader studies very often result in very different results and are very time consuming. We want to develop a way to characterise patient images based on physical methods to describe image quality so that fast objective measurements correspond to human reader studies. That would allow qulaity assurance on real patient images in the future.

Projekt im Forschungsportal ansehen

Robot driven CT with WATCH geometry KaribiCT
Laufzeit: 15.05.2016 bis 30.11.2020

The newly developed geometry for CT applications called WATCH allows a CT scan with variable resolution, in a lying as well as a sitting and standing patient position. It is an open system with easy access fort he radiologist and can be driven by a robot system. However, although the system and the used reconstruction should be very tolerant against movement errors, that would not be the case for geometrical misalignments. Therefore we focus on setting up the robot driven system with a 3D imaging detector and a calibration system. This calibration system can be used for standard CT as well.

Projekt im Forschungsportal ansehen

Sub-100 ps TOF CRT impact in interventional molecular brain imaging
Laufzeit: 01.08.2015 bis 31.07.2020

Time Of Flight (TOF) capability in PET imaging enhances Signal to Noise Ratio in inverse proportion to the temporal resolution. The Coincidence Resolving Time (CRT) in commercial PET scanners is about 500 ps (FWHM) but current technology limit approaches 10 ps CRT (FWHM) corresponding to 1.5 mm spatial resolution.

TOF increases lesion detection capability, the robustness of iterative reconstruction, and reduces bias in quantification through improved
attenuation, scatter, and random corrections. This investigation studies through simulations the possible enhancements in brain imaging of sub-100 ps CRT technology, in both static and dynamic brain studies.
We will develop prototyp PET detectors.

Projekt im Forschungsportal ansehen

CT-characterisation of bowtiefilters and parameters for dosimetric calculations
Laufzeit: 01.11.2014 bis 31.12.2019

CT imaging is the largest man-made source of ionising radiation to the public in developed countries as in Germany. Here more than 60% oft he effective dose delivered to patients is due to CT examinations. However, since only small parts oft he body are exposed to ionising radiation, there are quite large dosest o single organs. To evaluate the dose distributions and ist potential effects further it is necessary to determine dose distributions to various organs in detail. Since it is impossible to measure such doses inside the body simulations have tob e performed. There accuracy depends strongly on an exact characterisation oft he CT parameters including calibrating dose measurements and determination or characterisation o feg the bowtie filter of CT systems. There are various measurements developed and performed to characterise bowtie filters and dose values as a basis fort he following simulation of patient dose distributions.

Projekt im Forschungsportal ansehen

SAFIR - Small Animal Fast Insert for mRi
Laufzeit: 01.10.2016 bis 30.09.2019

SAFIR (Small Animal Fast Insert for mRi) is an innovative, high rate PET detector insert for MRI to be used for quantitative dynamic small animal imaging inside the bore of a commercial 7T MRI preclinical scanner (Bruker 70/30, http://tinyurl.com/BrukerBiospec) at the University Zurich, Institute of Pharmacology and Toxicology. The project targets an unprecedented temporal resolution (about 5 seconds) and truly simultaneous PET/MR acquisition

Projekt im Forschungsportal ansehen

The use of diamond detectors for dosimetry and microdosimetry assessment in different therapeutic scenarios
Laufzeit: 01.07.2016 bis 30.06.2018

In cancer treatment both ion-beam therapy and alpha radionuclide therapy base their effectiveness on the high ionization density provided by hadrons. However the stochastic nature of the hadron interaction in tissue, and the complexity of the interaction patterns

require a better description of the radiobiological effect of hadrons in tissue that cannot be
adequately reflected, as in conventional radiation therapy, by a single dosimetric quantity,
e.g. mean absorbed dose to target volume. MedAustron, the Austrian centre for ion-beam therapy, in collaboration with the University of Rome, Tor Vergata is developing semi-conductor diamond detectors for dosimetry and microdosimetry in ion-beam therapy. The potential of such (micro)dosimeters with respect to alpha radionuclide target therapy, 90Y radio-embolization, and other treatment modalities is under investigation in the present project.

Projekt im Forschungsportal ansehen

Letzte Änderung: 08.06.2023 - Ansprechpartner: Webmaster