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The purpose of this text is to give a fairly complete description of the steps needed in deriving
the Schwarzschild geometry from the field equations. Not all the details of the calculationwill
be shown, but I will indicate what approach is taken and where there are choices to be made.

What dowewish to obtain? The space-timemetric outside a spherically symmetric time inde-
pendent mass distribution. Ultimately, wemay consider the distribution localized so strongly
that it becomes a mass point and our solution is valid in all of space-time except at the world
line of that mass point. Since the metric will be a vacuum solution, the field equations reduce
to the requirement that the Ricci tensor vanishes.

We require time independence and spherical symmetry. Hence, the coefficients of the metric
must not depend on the time coordinate. Moreover, to implement spherical symmetry, we
take standard angular coordinates ϑ and ϕ to coordinatize each two-dimensional subspace at
fixed time and radial coordinates (the “radial” is already an interpretation). Then the spatial
part of the line element will contain the expression dϑ2 + sin ϑ2dϕ2 but cannot have other
dependencies on either ϑ or ϕ; moreover, the mirror symmetries that are part of spherical
symmetry exclude any mixed terms containing dϑ or dϕ, hence the elements of the metric
tensor connecting time and angular (or radial and angular) coordinates must be zero.

Therefore, the most general line element compatible with spherical symmetry and time inde-
pendence may be written in the form:

ds2 = gikdx
idxk = −F(r̃)dt̃2 + 2K(r̃)dt̃dr̃+ G(r̃)dr̃2 + H(r̃)

(

dϑ2 + sin ϑ2 dϕ2
)

, (1)

containing four functions of the radial coordinate r̃. However, these may not all be inde-
pendent. We can eliminate two of them by appropriate redefinitions of the radial and time
coordinates. With the metric (1), the surface of a sphere with radius r̃ (obtained by integra-
ting the surface element

√
g
2
dϑdϕ = H(r̃) sin ϑ dϑdϕ over the whole solid angle), becomes

4πH(r̃). Choosing as new radial coordinate1

r =
√

H(r̃) , (2)

this area becomes 4πr2 and our line element turns into

ds2 = −F̃(r)dt̃2 + 2K̃(r)dt̃dr+ G̃(r)dr2 + r2
(

dϑ2 + sin ϑ2 dϕ2
)

, (3)

where K̃(r) = K(r̃)dr̃/dr and
√

G̃(r) =
√

G(r̃)dr̃/dr and F̃(r) = F(r̃). We may therefore

state to have chosen the radial coordinate so that it is equal to the square root of the surface,
divided by 4π, of the sphere about the origin having that radius. The same choice of radi-
al coordinate obviously obtains if instead we require r to be 1/2π of the circumferenc of a
corresponding circle centred at the origin.

A second simplification, reducing the number of independent functions on which our metric
depends to two, is obtained by an appropriate choice of the time coordinate. This can be seen

1H(r̃) must be positive for the metric to have the right signature.
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setting

t̃ = t+ w(r) ⇒ dt̃ = dt+ w′(r)dr , (4)

which transforms Eq. (3) into

ds2 = −F̃(r)dt2 + 2
[

K̃(r)− F̃(r)w′(r)
]

dtdr

+
[

G̃(r)− F̃(r)w′(r)2 + 2K̃(r)w′(r)
]

dr2 + r2
(

dϑ2 + sin ϑ2 dϕ2
)

. (5)

If we choose w′(r) = K̃(r)/F̃(r), the off-diagonal term of the metric will become zero, leaving
us with only two radial functions to be determined, viz. the prefactors of dt2 and dr2.

But let us first discuss the meaning of this choice. It makes the metric time-orthogonal, resulting
in a line element that contains only squares of differentials. Since propagation of light may be
described by setting the line element equal to zero, the time interval light will take to run from
one end of a spatial line element to the other will not depend on the direction of the motion.
Therefore, for any (non-moving) spatial curve with endpoints A and B light will take exactly
the same time to pass from A to B along the curve as from B to A. Nothing more is guaranteed,
neither does time-orthogonality imply an isotropic velocity of light nor a constant universal
speed. As a denotation referring more directly to this particular property of the coordinate
velocity of light (than the equivalent time-orthogonality), we might introduce the notion of
bidirectional symmetry. The interesting question then is whether this feature that, according to
Einstein’s own words is “neither a supposition nor a hypothesis about the physical nature of
light, but a stipulation” [1], should be considered desirable, in general.

Let us assume we have a horizon somewhere in space-time, i.e. a spatial surface from which
light cannot escape in one direction. If this is to be described via fixing a spatial coordinate,
then the horizon property means that the coordinate velocity of light along the coordinate
increasing in the forbidden direction must be equal to zero. If it were larger than zero, light
could move beyond the horizon, if it were smaller than zero, it would be smaller in a whole
environment of the surface, meaning that light could not escape even from a slightly shifted
surface, so the surface would actually be already “inside” or “below” the horizon. Now, if
light has the bidirectional symmetry property (which is not really a property of light but
a property following from our coordinate choice [1]) then this means that the coordinate
velocity of light also in the other direction, i.e. towards the “interior” of the horizon must
be zero. Therefore, light approaching the horizon from the “outside” must slow down. This
is clearly counterintuitive. We tend to think that light cannot escape from a horizon in one
direction because of a strong gravitational pull opposing motion in that direction. The same
pull should rather make light go faster in the opposite direction than slow it down. Since we
are talking coordinate speeds here, which depend on the choice of coordinates, we are certainly
allowed to make a choice that leads to non-intuitive behaviour. But is it desirable?

An advantage of bidirectional symmetry of the velocity of light is that we can use light to
synchronize distant clocks in a procedure that is called Einstein synchronization. Essentially,
to any event an observer assigns the time on his clock that corresponds to the arithmetic mean
of the departure and arrival times (on the same clock) of a light signal he sent to the event and
that was immediately reflected back so he could receive it again and record its arrival time.
Clearly, any event on a horizon can only be assigned the time infinity in such a set-up because
a light signal will never return – pictorially, return only after infinite time – from the horizon,
and the mean value of a finite and an infinite time remains infinite. But of course, this is a
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consequence of our choice that light should have a bidirectionally symmetric velocity. This
will automatically render any time coordinate so established singular on a horizon, which is
a disadvantage.

Therefore, I will not choose w(r) in such a way as to render the metric time-orthogonal. Ne-
vertheless, I would still like to deal with only two independent radial functions, not with
three. Are there other, possibly more favourable choices?

Well, why don’t I choose w(r) so as to make the prefactor of dr2 in Eq. (5) equal to one? If
feasible that would render the spatial line element of a slice at constant t of our space-time
Euclidean, which looks like a nice feature to have. The condition to ensure this is

G̃(r)− F̃(r)w′(r)2 + 2K̃(r)w′(r) = 1 , (6)

which after solving for w′(r) turns into

w′(r) =
K̃(r)

F̃(r)
±

(

K̃(r)2

F̃(r)2
+

G̃(r)− 1

F̃(r)

)1/2

. (7)

An acceptable function w(r) is obtained by simple integration. If we choose the+-sign, it will
be monotonously increasing as long as F̃(r) and K̃(r) are positive. We need not really worry
about these details, because at this moment we are looking only for an acceptable form of the
metric. The functions appearing in it will be determined by the field equations. If we find
a solution of those, then we are sure that we have solved the physical problem as well, no
matter how we got there.

With the simplification introduced by the coordinate transformation of time, we may then
write the general form of our line element as follows:

ds2 = − f (r) c2dt2 + 2k(r) cdtdr+ dr2 + r2
(

dϑ2 + sin ϑ2 dϕ2
)

, (8)

which contains only two independent function as desired.

The next step is to write down the field equations for the metric following from (8), i.e.,

(

gij
)

=









− f (r) c2 k(r) c 0 0
k(r) c 1 0 0
0 0 r2 0

0 0 0 r2 sin2 ϑ









. (9)

This involves a number of lengthy calculations. We should obtain the Christoffel symbols
from the metric and their derivatives with respect to the coordinates, then write down the
Riemann curvature tensor, take its trace to get the Ricci tensor, and finally set the components
of the Ricci tensor equal to zero, thus stating the vacuum field equations. Doing this by hand
would be themost tedious part of the derivation and of course pretty error prone. Fortunately,
nowadays there are computer algebra systems such as Maple that can do this work for you.

Plugging the metric into Maple’s engine2 and cranking the handle, I get the following non-

2This was the version Maple 17.
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trivial components of the Ricci tensor:

Rt
t = − 1

4r ( f + k2)2
[

(2r f ′′(r) + 4 f ′(r))
(

f (r) + k(r)2
)

− f ′(r)( f ′(r) + 2k(r)k′(r))
]

,

(10a)

Rt
r =

1

cr ( f + k2)2
[

f ′(r) + 2k(r)k′(r)
]

k(r) , (10b)

Rr
r = − 1

4r ( f + k2)2
[

2r f ′′(r)
(

f (r) + k(r)2
)

− r f ′(r)( f ′(r) + 2k(r)k′(r))

+ 4k(r)2 f ′(r)− 8k(r)k′(r) f (r)
]

, (10c)

Rϑ
ϑ = R

ϕ
ϕ =

1

2r2 ( f + k2)2
[

2k(r)2
(

f (r) + k(r)2
)

− r f ′(r)
(

f (r) + 2k(r)2
)

+ 2r f (r)k(r)k′(r)
]

, (10d)

where I have suppressed the argument r of f (r) and k(r) in the prefactors.

We then have to solve the field equations

Rt
t = Rt

r = Rr
r = Rϑ

ϑ = R
ϕ
ϕ = 0 (11)

subject to the boundary conditions

lim
r→∞

f (r) = 1 , (12a)

lim
r→∞

k(r) = 0 , (12b)

requiring the metric to become Minkowskian at infinity.

Calculating the radial velocity of light from our metric (setting ds2 = 0 and dϑ = dϕ = 0 in
(8)) we obtain

(

dr

dt

)2

+ 2k(r) c
dr

dt
− f (r)c2 = 0

⇒ dr

dt
= c

(

±
√

f (r) + k(r)2 − k(r)

)

. (13)

For positive f (r), the +-sign gives dr
dt > 0, hence corresponds to an outgoing light ray, whe-

reas the −-sign produces dr
dt < 0, describing an infalling ray. In order for the absolute value

of the infalling velocity to be larger than that of the outgoing one, which corresponds to our
intuition that gravity will help light to move inward and hinder it moving outward, we have
to choose the sign of k(r) positive. (As we shall see later, we do have a choice in that regard.)

Equations (10) and (11) are four distinct nonlinear ordinary differential equations for the two
functions f (r) and k(r), which looks like too many. But as physicists we are hopeful that the
problem is well-posed for physical reasons. In fact, we know that there must be a solution in
the very-weak-field limit (the Newtonian one) and so only two of these four equations should
eventually turn out independent.

A good solution strategy is to start with the simplest equation, i.e., by requiring the compo-
nent from Eq. (10b) to vanish. This gives

f ′(r) + 2k(r)k′(r) = 0 , (14)
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which can be immediately integrated to yield

f (r) + k(r)2 = const. (15)

and the constant is obtained from (12) taking r → ∞, hence we have

k(r)2 = 1− f (r) , (16)

which means that the three remaining equations must all have the same solution. It is com-
forting to know at this point already that out of the two possible square roots of (16), we may
restrict ourselves to the positive one.

Inserting (16) and (14) into (10a), (10c), and (10d), we obtain, using (11)

0 = r f ′′(r) + 2 f ′(r) ⇒ f ′′(r)

f ′(r)
+

2

r
= 0 ⇒ ln f ′(r) + ln r2 = ln A = const.

⇒ f ′(r) =
A

r2
⇒ f (r) = 1− A

r
, (17a)

0 = 2r f ′′(r) + 4(1− f (r)) f ′(r) + 4 f ′(r) f (r) ⇒ r f ′′(r) + 2 f ′(r) = 0

(same equation) , (17b)

0 = 2(1− f (r))− r f ′(r)(2− f (r))− r f (r) f ′(r) ⇒ 1− f (r)− r f ′(r) = 0

⇒ 1

r
− f ′(r)

1− f (r)
= 0 ⇒ ln r+ ln(1− f (r)) = const.

⇒ r(1− f (r)) = B = const. ⇒ f (r) = 1− B

r
⇒ B = A . (17c)

So we indeed find a solution that depends on one free parameter, A:

f (r) = 1− A

r
, k(r) =

√

A

r
, (18)

where we have chosen k(r) to have positive sign and obviously we must have A ≥ 0.

Using the equivalence principle and introducing a potential Φ(r) so that the gradient of this

potential gives the local proper acceleration, one can show that f (r) = e2Φ(r)/c2 (if the poten-
tial is normalized the standard way, i.e., goes to zero as r → ∞) [2]. Requiring this potential
to reduce to the Newtonian limit as r → ∞, we obtain:

f (r) ∼ 1+
2Φ(r)

c2
∼ 1− 2GM

c2r
(r → ∞) , (19)

whence A = 2GM/c2, where M is the mass of the central body, and therefore

f (r) = 1− 2GM

rc2
, k(r) =

√

2GM

rc2
, (20)

Our metric or line element, obtained by solution of the field equations, then reads:

ds2 = −
(

1− 2GM

rc2

)

c2dt2 + 2

√

2GM

rc2
cdtdr+ dr2 + r2

(

dϑ2 + sin ϑ2 dϕ2
)

. (21)
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This is the Schwarzschild metric, though not in standard Schwarzschild coordinates.

Let us discuss some of its salient features. There is a radius rS = 2GM/c2, where f (r) beco-
mes zero. The metric is however not singular there, because the off-diagonal terms prevent
its determinant from taking on the value zero. Nevertheless, the sign change of f (r) is signi-
ficant. The coordinate speed of light of Eq. (13) becomes zero at rS for the outgoing ray. The
general expression simplifies to

dr

dt
= c

(

±1−
√

rS
r

)

, (22)

which shows that for r < rS, there is no outgoing light ray anymore, as both velocities are
smaller than zero.Moreover, coordinate stationary observers are impossible at r < rS, because
dr = dϑ = dϕ = 0 would imply ds2 > 0, hence a spacelike interval, for the world line of such
an observer. However, world lines of observers must be timelike. Therefore, any observer at
r < rS must move, and the motion must be towards smaller r, because otherwise the observer
would move faster than light in the outward direction. This demonstrates that there is an
event horizon at r = rS.

It is easy to show that an observer falling freely from some finite value r0 towards r = rS
will hit the horizon at finite proper time and that the global time t of the metric describing
that event will also remain finite.3 Now the conversion factor between the rate of proper time
of each coordinate stationary observer and the rate of the global time is just

√

f (r), which
is defined and finite outside the event horizon. (Inside, there are no coordinate stationary
observers anyway.) But this means that if the falling observer Oin hits the horizon at finite
time t, also the proper times of all the coordinate stationary observers remaining outside will
be finite the moment he hits the horizon.

Weird as this may seem to someone accustomed only to the standard form of the Schwarz-
schild metric (which is obtained from the metric (21) via the coordinate transformation t →
ts = t+ w(r) with w′(r) =

√
rS/r

c(1−rS/r)
),4 there is no contradiction with the statement made in

the context of this standard form that an infinite amount of proper time will pass for external
observers until the time the infalling observer hits the horizon. For what do we want to com-
pare here? In the past, the infalling observerOin and some external coordinate stationary one
Oext may have set their clocks to the same time when the former met the latter on his way in.
So at the intersection of their world lines they have the same proper time. But when the infal-
ling observer hits the horizon, he is far away from the coordinate stationary one. How can the
two proper times they have on their clocks “now”, be compared? (In fact, that is not quite the
right question, which would be how can they be defined?) Well, one way is to use the global
time that is defined for both of them. If Oin hits the horizon at time thit, corresponding to his
proper time τin,hit, then the corresponding proper time of Oext will be τ(thit) = τext,hit. Since
thit is finite, this must be finite as well. If instead we use the more artificial Schwarzschild time
coordinate ts for comparison, then we will find thatOin still hits the horizon at τin,hit, because
this is a point coincidence. But the time ts = ts(τin,hit) = ts hit is infinite, because it is defined
so that events on a horizon cannot have finite time coordinates, due to the insistence on bidi-
rectional symmetry of the speed of light. Of course, the proper time of the external observer

3In fact, for an observer starting his journey at the inward speed he would have attained by falling from infinity to
r0, it turns out that his proper time coincides with the global time during his fall.

4Since the transformation fixes only the derivative of w(r), it is possible to choose a radius r0 (preferably distant
from the centre), where ts = t.
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corresponding to this time ts hit = ∞ has to be infinite, too... But the event onOext’s world line
taken to correspond to the moment when Oin hits the horizon is a different event in the case
where we define correspondence via t than in the case where we define correspondence via
ts. So there is not one event at Oext’s end corresponding to Oin’s crossing. Instead we get to
choose, which one we consider as “corresponding”. This freedom of choice is not in any way
affected by the fact that proper time is a relativistic invariant. The proper time between two
fixed events on a world line of some observer is the same for all observers. But we do not have
two fixed events onOext’s world line. Only the event whereOext andOin meet up is fixed. The
crossing of the event horizon by Oin does not fix any event on Oext’s world line.

Using light signals in an attempt to establish a relationship between the proper times of Oext

and Oin will not change this result. If we wish to know what time of Oext corresponds to the
time of Oin and have Oin send light signals all the time he is falling, then of course these
signals will take longer and longer to arrive at Oext’s position. But to compare times, Oext

has to subtract from the arrival time of a light signal the time it took the light to cover the
distance from Oin to his position. Naturally, this time will also go to infinity. In the end, Oext

has to take the limit of a difference of two times (the time he receives the light signal and the
time the signal took), both approaching infinity, to calculate the time τext,hit. Now the arrival
proper time of the signal on Oext’s clock is the same in both coordinate systems, since it is
a point coincidence. But the running time of the light is different, because the coordinate
velocity of light differs in both coordinate sets. In fact, the signal will take a much shorter
time in Schwarzschild coordinates, because the outgoing light signal is about twice as fast in
these near the horizon than in the coordinates describing (21). The closer to the horizon the
signal is sent, the more dominant this behaviour of the speed of light in its vicinity becomes.
Therefore, Oext, when reckoning in Schwarzschild coordinates will subtract a much smaller
number from the arrival time of the light (which does approach infinity) thanwhen reckoning
in the so-called Gullstrand-Painlevé coordinates (21). The net effect is that the difference of
two infinite numbers will go to infinity in the first case and remain finite in the second.

There are other advantages of Gullstrand-Painlevé coordinates. For example, it is very diffi-
cult to discuss the question in Schwarzschild coordinates whether a black hole will evaporate
from under an observer due to Hawking radiation, before he can fall in, whereas the answer
is unambiguous in Gullstrand-Painlevé coordinates. The point is that the evaporation time,
even though very long5 is finite. Moreover, it is a time calculated for a distant observer recei-
ving the radiation, so this time is independent of the coordinates used as long as they become
Minkowskian far from the centre.

With Schwarzschild coordinates, there seem to be two options. If we assume the infinite ti-
me it takes our infalling observer to reach the horizon to be real, the horizon should start
shrinking under him and disappear, before he can reach it. An infalling observer does not see
Hawking radiation,6 so the black hole would seem to disapppear below him and he would
find himself propelled into the far future (by about 1067 years). Alternatively, he would have

5About 1067 years for a black hole the size of the sun, not accounting for the delay by the fact that there is a
microwave backgrund that still increases the mass of black holes having temperatures below 2.75 K; black holes
exceeding the sun’s mass have temperatures below 60 nK

6Which the external observer may rationalize by noting that the infalling one is length contracted and Hawking
radiation created by a kind of tunnel effect will appear to start its existence somewhat outside the horizon, with
the infalling observer hovering over the horizon closer to it than the locus where the radiation is generated. Note
that the wavelength of Hawking radiation is a few Schwarzschild radii.
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to fall through the horizon in finite time. This seems implausible given that the horizon is re-
treating from him and he would need infinite time to reach a non-retreating horizon. Things
are even worse: if we try to describe what happens using Schwarzschild coordinates, we will
inevitably run into contradictions. Suppose an observer tries to just touch the horizon at one
moment by firing his rocket at full throttle. Normally, on touching it, he would fall in. But
with good timing, he might touch it so that due to the fact that the horizon is shrinking, he
will not fall in, because a split-second after his having touched it, the horizon will be lower. (If
this seems unplausible, just consider a lightwave hovering at the horizon.) So he can escape
(or the lightwave could). In his local coordinates, this means that at some time τ1 the horizon
was at position r1 and at some later time τ2 at position r2 < r1. Now how to describe this in
the terms of the distant observer? The event (τ1, r1) must be at time infinity for him, because
events on the horizon cannot have another time coordinate if the speed of light is bidirectio-
nally symmetric. At the local time τ2 > τ1, the radial coordinate r1 is outside the horizon.
Therefore, its description by the external observer must be that it is at a finite time. Light can
get to (τ2, r1) and back. So the later local time which is connected by a timelike (or null) tra-
jectory with the former, will be earlier for a distant observer than the first time. Of course, we
can avoid this contradiction by saying by the time the horizon retreats, the black hole, being
dynamic, cannot be described by the Schwarzschild metric anymore. But this means we can-
not answer our question before we can solve the complicated time-dependent problem of just
how the black hole evaporates.

On the other hand, with Gullstrand-Painlevé coordinates, everything is pretty simple. Suppo-
se our infalling observer starts 5 light years from the black hole with an inward (coordinate)
velocity of about one tenth of the speed of light. It is then easy to convince oneself that with
these initial conditions his inward coordinate velocity will increase towards the horizon, so
he will arrive there in a little less than fifty years of coordinate time. This is a fraction of
2× 10−65 of the time it takes the black hole to evaporate (which is also coordinate time, be-
cause far from the centre coordinate time and proper time of coordinate stationary observers
are the same). In a time span of fifty (or even a million) years, this evaporation will not be
perceptible,7 i.e., the Schwarzschild geometry is still an exceedingly good approximation,
even though the problem formally is dynamic. But Gullstrand-Painlevé coordinates on the
Schwarzschild geometry predict that the infalling observer crosses the horizon within a time
of somewhat less than fifty years. Since the approximation of a stationary geometry is still
good enough to be indistinguishable from reality at that time, the observer will fall in, long
before Hawking radiation becomes appreciable. So we have an unambiguous answer – there
is no evaporation of the black hole under the feet of our observer; he will be long dead before
evaporation becomes visible, because he crosses the horizon some 1067 years before.8
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7At a temperature of 6× 10−8 K, energy is not radiated away very fast.
81067 − 50 (or even 1067 − 106 for that matter) is still 1067 to a very good approximation.
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