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Abstract In the first part of the paper, two different texture-dependent material models
based on the Taylor assumption are discussed and applied to the simulation of deep draw-
ing operations of aluminum. Special emphasis is given to the calibration of anisotropy
which is predicted by these models in their standard forms. In the second part of the
paper, the quadratic yield condition suggested by v. Mises and Hill is reconsidered. A
micromechanical interpretation of the fourth-order anisotropy tensor in terms of texture
coefficients is given. '

1 Introduction

This paper is divided into two parts. In the first part (Chapter 2), two different texture-
dependent material models based on the Taylor assumption are discussed and applied
to the simulation of deep drawing operations of aluminum. From the numerical point
of view, large-scale FE computations based on the Taylor model are very time-intensive
and storage-consuming if the crystallographic texture is approximated by several hundred
discrete crystals. Furthermore, the Taylor model in its standard form, which is based on
discrete crystal orientations, has the disadvantage that the anisotropy is significantly
overestimated if only a small number of crystal orientations is used. Here this overesti-
mation of anisotropy is quantitatively analysed, and two Taylor-type models which lead
to a reduction of the sharpness of the crystallite orientation distribution function (codf)
are suggested. One model is an elastic-viscoplastic Taylor model based on discrete ori-
entations. The sharpness is reduced by introducing an isotropic background texture by
means of an additional isotropic material law. The other model is a rigid-viscoplastic one
which uses continuous model functions on the orientation space. This model allows for a
direct incorporation of the scattering around an ideal texture component since the model
contains the half-width as a microstructural parameter which can be biased.

In the second part of the paper (Chapter 3) the quadratic yield condition suggested
by v. Mises {25] and Hill [14] is reconsidered. A micromechanical interpretation of the
fourth-order anisotropy tensor in terms of texture coefficients [6, 7] is given. For the
special case of an orthorhombic sample symmetry and a plane stress state, it is shown
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that the parameters of the v. Mises-Hill model can be identified by the texture of the
material. This identification additionally requires the measurement of two mechanical
(uantities.

2 Texture Based Micro-Macro-Models

Ductile polycrystalline metals subjected to forming processes usually show anisotropic mi-
crostructures. A typical feature of an anisotropic microstructure is that the distributions
of the grain orientation and the grain shape are direction-dependent (crystallographic
‘and morphological texture). These anisotropies induce direction-dependent yield loci
and contraction ratios. Furthermore, the development of ears during deep drawing pro-
cesses is commonly observed. Due to the prior processing, the anisotropy may already
exist before the forming operation, but can also evolve by the deformation process. In
order to perform reliable forming simulations, micromechanically based material models
offer the opportunity to incorporate microstructural information directly into the ma-
terial model, and, thus, to put the modeling on a physically sound basis. Taylor type
polycrystal models [24, 18, 19, 10, 21] or self-consistent schemes, see e.g. [22], belong to
this class of micromechanically based material models. Although computationally much
more expensive than phenomenological models, they are nowadays more and more used in
the integration points of finite elements in order to bridge the gap between the grain-scale
and the macro-scale.

If the two-point statistics of crystal orientations is isotropic, then the codf represents
the dominant aspect of the microstructure. The evolution of the codf can be modeled
most easily by Taylor type models. In the present work two Taylor type models are used.
One model is an elastic-viscoplastic model based on discrete crystal orientations (DT -
discrete Taylor model) [9]. The macroscopic Kirchhoff stress is given by a superposition
of the single crystal stresses. The model is enhanced by an isotropic constitutive equation
modeling the isotropic part of the texture (DT(I) - discrete Taylor model with isotropic
background texture) [9]. More precisely, the DT model is modified by decomposing
the stress tensor into two parts. One part describes the isotropic effective viscoplastic
behavior due to a random texture. The other part results from a the superposition
- of the crystal stresses. Consequently, we have two types of volume fractions. One type
corresponds to the single crystals, the other one describes how isotropic the microstructure
is. The overestimation of anisotropy can be avoided by adapting the isotropic volume
fraction.

The second model is an (elastic-)rigid-viscoplastic model based on continuous model
functions on the orientation space (CT - continuous Taylor model) [8, 9]. The applied
Mises-Fisher model functions {20, 12] permit an explicit modeling of the scattering around
texture components. The Mises-Fisher distribution is a central distribution. The scat-
tering of a texture component can be described by a half-width value b. In contrast to
the model of [23], the CT model directly incorporates this parameter for the calculation
of the macroscopic stresses [8, 9].

Both material models have been implemented into the finite element code ABAQUS
[13] using the interface UMAT, and are applied to the simulation of deep drawing pro-
cesses. Fig. 1 shows the experimental and the simulated earing profiles for the DT and
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Figure 1: Comparison of the earing profile calculated by the DT and the CT model with
experimental data {11]

the CT model. The starting texture for both models has been calculated from the ex-
perimental codf-section given in [11]. It can be seen that the discrete model drastically
overestimates the earing height. This means that the anisotropy is overestimated. The
continuous model also overestimates the earing height if the half-width is chosen in or-
der to fit the codf section. If the half-width b is enlarged by a factor 8 of 2 then the
continuous model rather accurately predicts the earing profile. Thus, the modification
of the half-width allows to correct the predictions of the Taylor model which inherently
overestimates the sharpness of the texture.

The predictions of the DT(I) model is analysed in the case of a pure cube texture.
In Fig. 2 the predicted earing profiles are shown for the DT(I) and the CT model. In
the case of the discrete model, the volume fraction of the isotropic part has been varied
in the range of 30% - 90%. In case of the continuous model, the half-width has been
varied in the range of 15° - 60°. It can be seen that the isotropic volume fraction of 30%
corresponds approximately to a half-width of 15°. A volume fraction of 50% corresponds
to a half-width of 30°. As a thumb rule, for half-width values larger than 10% one can
use the fact that the isotropic volume fraction in the DT model is approximately given by
(10+2406/7)% (b in rad). If one takes into consideration that even b should be increased
by a factor of 2...3, then one has a rough estimate of the isotropic volume fraction in
the DT model directly based on the codf. However, this estimate depends on the number
of crystals involved in the DT model. The estimate given here can be considered as
an upper bound. If more discrete orientations are used, the isotropic volume fraction
should be smaller. Since for a small number of crystal orientations the discrete model is
computational less expensive, this modification of the discrete Taylor model seems to be
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Figure 2: Earing profile for a cube texture corresponding to different isotropic volume
fractions in the DT(I) model and different half-widths in the CT model

versatile.

3 Macroscopic yield criteria

The earliest anisotropic yield criterion is probably due to v. Mises [25]. The proposed
quadratic form considers the anisotropy of the material by a fourth-order structure tensor.
Hill [14] investigates this yield criterion for the case of orthorhombic sample symmetry. An
advantage of this orthorhombic form is that all material parameters can be determined by
uniaxial tests. Because of its simple form, the Hill criterion is frequently used in forming
simulations.

Such an elementary approach to the description of mechanical anisotropy, however,
has inherent shortcomings. For example, specific experimentally observed earing profiles
cannot be reproduced by the quadratic yield function, see e.g. [23]. Furthermore, the Hill
criterion cannot predict the anomalous behavior which is observed in some metal alloys
[1). In contrast to the Hill criterion, the criteria of [15, 17} allow for a description of
such effects. On the other hand these criteria are limited to the case that the orthotropy
axes are coincident with the principal directions of the stress. The criteria proposed by
[16] and [4, 3, 2] can be generally applied. They allow for a better approximation of the
anisotropic material behavior than the models of [25] and [14]. The drawback of these
advanced models is the large number of parameters which is necessary to describe the
anisotropy more properly.

The quadratic yield criterion of v. Mises and Hill is purely phenomenological. The pa-
rameters of the criterion can be identified by mechanical tests. By contrast the quadratic
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form introduced by [5] is micromechanically motivated, since it is based on a texture
coefficient of fourth order [6, 7). In the sequel the yield criterion of {14] and the criterion
of [5] are compared. ‘

The quadratic yield criterion of [25] can be brought into the form

o-Hog]-1=0. (1)

Assuming H as a fourth-order tensor with major symmetry and left and right minor
symmetry, this tensor contains 21 independent constants describing the anisotropy of the
material. In the special case of orthorhombic sample symmetry this tensor has 9 indepen-
dent constants with respect to the principal anisotropy axes. If pressure-independence of
the yield criterion is furthermore required, H is traceless in the first pair of indices. Thus,
the number of independent constants for orthorhombic symmetry is reduced to 6. The
result with repect to the orthotropy axes which coincide with the coordinate axes e;, is
the following yield criterion [14]

F(o9s — 0'33)2 + G(O‘33 - 0’11)2 + H(on1 — 0’22)2 + 2LJ§3 + 2M0’%3 + 2N0’%2 =1. (2)

Under the assumption of plane stress (ej-e; plane), ie., 033 = 023 = 013 = 0, the
parameters L and M do not enter the criterion (see (2)). In this case the Hill criterion
only depends on four independent constants. o

Following Béhlke [5], the anisotropy tensor H in equation (1) can be represented by

3
H= (Pl +nV'). 3)
F

The tensor P} is a projector of fourth order, which maps a second order tensor into its
deviatoric part. V' characterizes the induced anisotropy. It is the fourth-order texture
coefficient appearing in a tensorial Fourier expansion of the codf [6, 7]. Therefore, this
tensor contains information of the crystallographic texture of the material. The influence
of V' on the yield criterion (1) is controlled by the parameter n. When choosing n = 0,
an isotropic material behavior is obtained. In comparison to the Hill tensor, V' is not
only traceless in the first pair of indices but also completely symmetric. As a result, the
number of unknowns for the tensor V' for triclinic symmetry can be reduced from 21 to
9. In the orthorhombic symmetry case this number can be further reduced to three.

As mentioned before, the Hill yield criterion requires the four parameters F, G, H and
N when assuming plane stress conditions. If the tensor H from equation (3) is used and
orthorhombic symmetry and plane stress conditions are assumed, then five parameters
must be determined: 1, V{150, V{133, Vaass: 0r. Note that only four of these parameters
can be independent.

Thus, in the case of orthorhiombic sample symmetry and plane stress conditions,
the Hill yield criterion and the texture based yield criterion of [5] are equivalent. The
correlations between the parameters of both models are given by

F = 1 — 3nVia3s G = 1 — 3nViis3
202, 20%

H = 1 =30V N = 31+ 2nViy '

2 2
20% 2 O
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The coeflicients V45, Vo3, and V{j,, can be determined by texture measurements. Fur-
thermore, the parameters n and op must be specified by, e.g., measuring the yield stress
or the R value in the rolling direction

1 Ry —1 2 ‘7_(2) (Ro+ 1)(Vi1a3 — Vi1py)

n = 55 op = - (5)
3 R0V1133 - V1,122 d 2 R0VlI133 - V1’122

Consequently, the identification of Hill’s tensor under plane stress conditions requires the
texture information and the measurement of two mechanical quantities.

4 Summary

In Chapter 2 different Taylor type models have been introduced. The models have been
applied to the deep drawing process of aluminum. It has been shown that the models
allow for a reduction of the anisotropy that is predicted by the standard Taylor model.

In Chapter 3 different forms for the quadratic yield criteria have been compared. In
general, such yield criteria, e.g., the Hill criterion [14], are not based on microstructural
informations. The anisotropy parameters are identified by mechanical tests. The yield
criterion proposed by [5] is based on a fourth-order texture coefficient. This texture
coefficient can be determined by texture measurements.

Under the assumption of plane stress conditions, the Hill criterion can also be identi-
fied by the texture of the material. This identification additionally requires the measure-
ment of two mechanical quantities like, e.g., R values or yield stresses.
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