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Abstract

A framework for material models describing ®nite plastic deformations is established by the
assumption of isomorphic elastic ranges. The concepts of decomposition into elastic and
plastic deformations is not needed, neither intermediate con®gurations. A comparison with

other approaches is given and shows their range of validity. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

In his Critical Review of the State of Plasticity, Naghdi (1990) drew the conclu-
sion, that ``there is some degree of disagreements on nearly all of the main con-
stitutive ingredients and features of plasticity in the presence of ®nite deformation...
Some of the issues of disagreements are of basic and fundamental importance.''
Today, almost one decade later, and after more than three decades of intensive
research and publishing activities in this ®eld, Naghdi's conclusion seems to be still
valid. There are numerous constitutive models that intend to describe ®nite plastic
deformations, and there are many FEM-codes in use with those models imple-
mented for the computation of such problems. However, di�erent ``schools'' are still
competing, and a generally accepted framework for these theories is still lacking.
This fact is di�cult to understand, for at least three reasons:

. There is great need for a general theory of ®nite plasticity, as there are many
applications for it in metal-forming, granular materials technology, etc.
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. The physics of the micro-mechanics has been intensively studied and deeply
understood. Both metal physicists and experimentalists are able to answer
most of the questions that a constitutive lawyer could raise.

. Since the late ®fties, the school of Rational Mechanics has tried hard to
establish a general framework for the mechanical and thermodynamical beha-
vior of all materials. The outcome was a satisfying theory for elastic and vis-
coelastic solids and viscous ¯uids, but no convincing plasticity theory was
o�ered. Only few authors from this school considered plasticity, e.g. Owen
(1968, 1970), Kratochvil (1973), Del Piero (1975), Wang (1975), Silhavy (1977),
Silhavy and Kratochvil (1977), Krawietz (1986), Lucchesi and Podio-Guidugli
(1988, 1990), Lucchesi et al. (1992). But very likely none of their suggestions
was ever really accepted and widely used, mainly because they were too com-
plicated and far from application. The contributions from Rational Mechanics
in the ®eld of ®nite plasticity were hardly in¯uential in comparison to those on
elasticity or viscoelasticity.

With the exceptions of few early suggestions such as Eckart (1948), Bilby et al.
(1955), Kondo (1952), and KroÈ ner (1960), the history of ®nite plasticity started in
the late sixties with the historical works of the American and the French schools.
Besides uncounted suggestions in the ®eld that were forgotten already soon after
their appearence, the mainstream of today's plasticity theory is threefold:

1. the concept of an additive decomposition of the strain tensor into an elastic and
a plastic part, both assumed to be symmetric, starting from Green and Naghdi
(1965);

2. the concept of an unloaded intermediate placement together with a multi-
plicative decomposition of the deformation gradient suggested by Lee (1969)
and Mandel (1971) in the same period;

3. theories without elastic ranges as generalizations of integral equations from
®nite linear viscoelasticity, such as the endochronic theory (Valanis, 1971,
Haupt, 1977).

While both the ®rst and second approach try to generalize the concepts of classical
Prandtl±Reuss±v. Mises plasticity theory and are thus comparable and competitive,
the latter is di�erent in its fundamental concepts and phenomena and will therefore
not be considered in the present context. We will instead limit our considerations to
materials with elastic ranges as it is substantiated, e.g. by crystal plasticity. In the
case of crystal plasticity, some of the basic mechanisms are much better understood
than in phenomenological plasticity.1 It should be therefore possible to consider
crystal plasticity as a specialization of general plasticity.
For our purpose we will construct a framework for constitutive models that show

the characteristic features of elasto-plasticity as we know them from classical plasticity.

1See, e.g. Asaro (1983), Havner (1992), Hosford (1993), Khan and Huang (1995), Khan and Cheng

(1996), Kratochvil and Dillon (1970), Kratochvil (1971), Krawietz (1986).
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It is not meant that these models are capable to describe each and every e�ect that
can be observed in metals or other plastic materials, but instead characterizes some
basic properties of plastic behavior. We consider these properties as being so typical
that we expect every plasticity theory to be capable to include them. As such we
choose:

. the existence of elastic ranges at any instant for the material point being limited
by a yield limit such that the material point behaves like an elastic point as
long as the further deformation does not exceed this limit.

. the elastic isomorphy of the elastic behavior within the elastic ranges.

We know from crystal plasticity that the current deformation of the lattice and
not of the material determines the stresses. But as plastic deformations do not
change the mean properties of the lattice, the characteristic parameters that deter-
mine the elastic properties, shall not be altered by plastic deformations (Anand and
Brown, 1987 p. 9)2

. rate-independence of plasticity.

Although rate-dependent e�ects can be observed in most, if not all materials, for
typical plastic behavior these are commonly neglected. In the present context we will
restrict ourselves to rate-independent behavior in order to keep the structure of the
models as simple as possible without questioning the importance of viscoplasticity.

While the above assumptions restrict our considerations to a special type of
behavior, namely elasto-plastic behavior, we require full generality with respect to
the following aspects:

. three-dimensionality of the model;

. large deformations, which requires material frame-indi�erence of all con-
stitutive equations involved;

. anisotropy of any type of all constitutive aspects;

. thermodynamic consistency, i.e. satisfaction of the second law of thermo-
dynamics;

. hardening and softening behavior, or materially stable and unstable behavior;

. associated and non-associated ¯ow rules.

One of the shortcomings of ®nite plasticity theories that Naghdi (1990) men-
tioned, is the confusion in the choice of dependent and independent variables and
their distribution (or decomposition) into elastic and plastic parts. In the mechanical
theory to follow, deformation-processes are generally considered as the independent
variables, which can be freely prescribed by the designer of experiments. The response
of the material is expressed by stresses and will be considered as the dependent vari-
able. In between these two groups of variables, a set of internal variables will be

2Note added in proof: In forthcoming papers by Rajagopal and Srinivasa quite similar assumptions

have been suggested. Their concept of natural con®gurations is not far from our use of material iso-

morphisms. The author is grateful to Arun Srinivasa for this helpful information.
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introduced as the handling of such variables (real numbers) is more practical than
that of processes (functions). The internal variables do not explicitly appear in the
balances and, thus, are not (directly) observable.
This choice of variables is in¯uenced by Rational Mechanics where it is taught

that the process of some appropriately chosen deformation tensor determines the
stresses at the end of the process. And the appropriate choice of these strain and
stress tensors is reduced by the principle of material frame-indi�erence. By choosing
the invariant or material right Cauchy±Green-tensor and a work-conjugate (material)
stress tensor, the entire theory indentically ful®lls these invariance requirements.
As Noll (1972) pointed out, the concept of (semi-in®nite) deformation histories

can be used for materials with fading memory (semielasticity), but is generally
inappropriate for rate-independent materials with permanent memory such as plas-
tic ones (Bertram, 1993). Instead, we use deformation processes of ®nite duration
starting from some (arbitrarily) ®xed initial state. For the sake of simplicity and
clearness, we will not overload this text and avoid the formalization or axiomatiza-
tion of material systems (Noll, 1972, Bertram, 1982, 1989) but, instead, leave such
notions as the state concept intuitive.
Based on the above assumptions we will establish an elasto-plasticity theory that

does not contain any constitutive assumptions on the decomposition of deforma-
tions or rates into elastic or plastic parts. Instead, we will afterwards be able to
derive di�erent kinds of such decompositions.
Within some theories on plasticity, the concept of reference placement plays a

crucial role although its physical interpretation in many cases is not clear. This has
led to some confusion, especially when mixed up with changes of observer or
superimposed rigid body motions. In 1972, Noll suggested the intrinsic description
of strains and stresses which does not make use of any reference placement.
Although the intrinsic description has great advantages and seems to be more nat-
ural than any other one, it did not become very popular and was used only by very
few authors (Del Piero, 1975, Silhavy and Kratochvil, 1977, Krawietz, 1986, Ber-
tram, 1989). The reason for this is perhaps that it needs some rather abstract geo-
metrical concepts such as tangent and cotangent spaces on manifolds which are
apparently not commonly available. Taking this situation into account, we decided
to not make use of intrinsic description as in Bertram (1992), but instead refer to a
reference placement. However, its choice will play no role, as it is absolutely arbitrary.
And the variables to be used are rather similar to the intrinsic variables of Noll (1972),
such that a transformation of the one set into the other is straight-forward.

2. Materials with isomorphic elastic ranges

We denote by

R the set of all real numbers
V the set of all vectors associated with the 3-dimensional Euclidean point

space
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Lin the set of all tensors on V
Inv the set of all invertible tensors
Sym the set of all symmetric tensors
Psym the set of all symmetric and positive-de®nite tensors
Orth the set of all orthogonal tensors

A superscript + indicates the restriction to tensors with positive determinant. 

denotes the tensor product.
Let F 2 Inv be the deformation gradient and T 2 Sym the Cauchy stress tensor, then

C :� FTF 2 Psym is the right Cauchy±Green con®guration tensor and

S :� Fÿ1TFÿT 2 Sym �1�
the material stress tensor,3 being work-conjugate to C, as the speci®c stress power is

�ÿ1tr�TL� � �ÿ1 1=2 tr�SC� � �2�

with the current mass density �. If the con®guration C depends on time in some
closed interval [0,d], we call it a con®guration process or a C-process. We will always
assume that such C-processes are continuous and piecewise continuously di�erenti-
able. If we restrict a C-process to a shorter interval [0,d], d<d, we call it a sub-
process. Conversely, the original process restricted to [d,d] will be called continuation
of the subprocess. Clearly, for compatibility a process can only continue some other
process, if the ®rst ends at the same time and with the same value when and where
the second one starts. The independent quantities of our format are such C-pro-
cesses that start at some initial time 0 at the same initial con®guration C(0). In Ber-
tram (1982), such a set is called process-class, and for some material point a material
functional assigns to each process out of this class the stress at its end. To specify
such a general functional for elasto-plastic behavior will be our task next.
The constitutive ingredient for elasto-plasticity is the notion of elastic ranges. Let

p be an index to be speci®ed later.

De®nition. An elastic range consists of fE p; hpg with
. E p � Psym being a path-connected closed subset of the con®guration space that

forms a di�erentiable manifold with boundary;4

. an elastic law

hp : E p! Sym j C 7! S;

being continuously di�erentiable and as such extendible onto Psym.

3By de®nition, this stress tensor is similar, but not equal to both the 2. Piola±Kirchho� tensor and to

Noll's intrinsic stress tensor. To our best knowledge, this tensor has not been used in literature, although

it has nice properties, especially in the context of plasticity.
4For certain yield criteria such as Tresca's this assumption is too restrictive and should be weakend by

assuming smoothness of the boundary almost everywhere. However, for the sake of simplicity we will

exclude this possibility for the moment.
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If the elastic law hp allows for a potential wp

S � 2� grad wp�C� �3�

we will call fE p; hpg a hyperelastic range. The ®rst assumption states the existence of
elastic ranges for any C-process.

Assumption 1. For any C-process out of the process class there exists an elastic
range fE p; hpg such that

. its ®nal con®guration is in E p, and

. for any continuation of this process that remains entirely in E p, the stresses at
its end are determined by the elastic law hp through its ®nal con®guration C

S � hp�C� �4�

Clearly, there are subsets of some elastic range with the same properties. To remove
this ambiguity, we will always think of the maximal elastic range (without further
mention).
In order to describe such a subset E p of Psym, it is quite practical to use the notion

of an yield criterion associated with E p which is just an indicator function

�p : Psym! R j C 7! �p�C�

such that

�p�C� < 0 () C 2 E o
p �interior of E p�

�p�C� � 0 () C 2 @E p �boundary of E p; called yield limit�
�p�C� > 0 () C 2 PsymnE p�elsewhere�

Such a yield criterion trivially exists for any elastic range, but it is by no means
unique. We further assume that �p is a di�erentiable function on Psym. By the chain
rule,

�p
� � trfgrad �p�C�C� �t�g �5�

holds in all cases.
As an example, we consider the Huber±v. Mises J2-criterion. Let J2(dev T) be the

second invariant of the deviatoric Cauchy stress dev T, and �Fp the yield limit under
uniaxial tension. Then fÿ3J2�devT�g1=2 is the usual v. Mises equivalent stress. It is
easy to see that T and SC have the same principal invariants. Hence,

J2�dev T� � J2�dev SC� �6�
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and

�p�C� � fÿ3J2�dev hp�C�C�g1=2 ÿ �Fp �7�

is an associated yield criterion (without hardening) for the Huber±v. Mises yield
limit.
If the C-process is such that the current C lies in the interior E o

p of E p, the material
behaves elastically and the current state will be called elastic. If the con®guration lies
on the yield limit @E p, i.e. �p � 0, two cases are possible.
i. The C-process does not exceed the yield limit because unloading

�p
� < 0 �8�

or neutral loading

�p
� � 0 �9�

occurs. That means that the C-process is directed towards the interior of E p, or is
tangential to the yield surface, respectively. In both cases, the state is again elastic.

ii. Only if both the yield condition

�p � 0 �10�

and the loading condition

�p
� > 0 �11�

are ful®lled simultaneously, the process tends to leave the current elastic range and,
thus, changes it. Such a state will be called plastic or yield state. If a state-process
passes only through elastic (plastic) states, we will call it elastic (plastic) process.
It should be emphasized that the loading condition does not exclude softening

behavior, as the elastic ranges are de®ned in the strain space and not in the stress
space (see Naghdi and Trapp, 1975, Casey and Naghdi, 1981).
During plastic processes, the material is continuously changing its current elastic

ranges. This means that not only the set E p is changing and, as a consequence, the
function �p does, but also that the elastic law hp has to vary. All functions and
variables with su�x p vary (only) during plastic processes, but remain constant in
elastic ones.
For most metals, however, the change of the elastic constants due to yielding is

negligible. To express this idea in precise mathematical terms, the concept of (elas-
tic) material isomorphisms is needed as we know it from elasticity theory (see Noll,
1972; Wang and Truesdell, 1973; Bertram, 1982, 1989). This is laid down in the
following.
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Assumption 2. Let fE 1; h1g and fE 2; h2g be two elastic ranges of the same material
point. Then h1 and h2 are isomorphic, i.e. there exists a material isomorphism
P12 2 Inv such that

h2�C� � P12h1�PT
12CP12�PT

12 �12�

holds for all C 2 Psym.
As we extrapolated the elastic laws onto the entire space Psym, there is no need to
distinguish between the original domains E 1 and E 2 of the two elastic functions in
this assumption.
By means of this assumption, we can choose one (arbitrary) elastic range, say {E 0,

h0}, as a (constant) elastic reference range, and then transform all other elastic laws
hp by some P2Inv into h0

S � hp�C� � Ph0�PTCP�PT �13�

While hp is continuously changing as a function during plastic processes, the right
hand side does not change as a function, but only through the time-dependent
variables P and C. We will call (13) the isomorphy condition and P the plastic trans-
formation (see Wang and Bloom, 1974). P will not be interpreted as a deformation
tensor. It has to be considered as an internal variable for which an evolution equa-
tions is needed. Before we deal with this, however, the question of the uniqueness of
P arises. As is shown in the next theorem, this question is directly connected with the
symmetry properties of the elastic laws. We recall that a tensor A2Inv is a symmetry
transformation (material automorphism) of an elastic law h if

h�C� � A h�ATCA�AT �14�

is satis®ed for all C2Psym. All such symmetry transformations form the symmetry
group G of h, being characteristic for each material.

Theorem. Let {E 0, h0} and {E p,hp} be two elastic ranges of an elasto-plastic material.
Then the following facts hold.

1. (Noll, 1958) If P is a plastic transformation from E 0 to E p and G 0 the symmetry
group of h0, then

G p � PG 0P
ÿ1 �15�

is the symmetry group of hp.
2. If P is a plastic transformation from E 0 to E p and G o and G p the symmetry groups

of h0 and hp, respectively, then ApPA0 too is a plastic transformation from E 0 to
E p for all A02G 0 and Ap2G p.

3. Let P and P be plastic transformations from E 0 to E p, then

PPÿ1 2 G p and Pÿ1P 2 G 0:
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By the above de®nitions, the proof of this theorem is straightforward and omitted
for brevity (see Bertram, 1992).
If we apply the second part of the theorem to our format, we can conclude that the

plastic transformation between two elastic ranges is unique only up to both-sided sym-
metry transformations. An important consequence of this fact is obtained if the
reference placement of h0 is an isotropic state, i.e. the symmetry group of h0 is the
general orthogonal group Orth. If P is the plastic transformation to some other elastic
range, then so is PQ for all orthogonal tensors Q. By an appropriate choice of Q, we
can always generate a symmetric plastic transformation in this case. Thus, if the
elastic reference law is isotropic, the plastic transformation can be taken as symmetric.
For any kind of anisotropy, however, this is not the case, and P must be considered as
non-symmetric in general.
By the isomorphy condition, we are able to reduce the time-dependence of the

function hp during yielding to the time-dependence of the tensorial variable P. In
order to do the same for the evolution of the set E p during yielding, or, equivalently,
for the associated yield criterion �p, we assume that there exists a (hardening) vari-
able Zp out of some linear space of ®nite dimension Lin, and a function

' : Inv� Psym� Lin! R

such that

�p�C� � '�P;C;Zp� �16�

holds for all elastic ranges. ' depends on the current elastic range only through its
arguments P and Zp being internal variables. Of course, the yield condition and the
loading condition can be expressed by ' through

�p�C� � '�P;C;Zp� � 0 �17�

and

�p�C�� � trfd�p�C�
dC

C� g � trf@'
@C

C� g > 0: �18�

As an example, we again consider the Huber±v.Mises-yield criterion, but with
some back-stress SBp for the kinematic hardening and some isotropic hardening
variable �Fp. In this case

�p�C� � fÿ3J2�dev�hp�C� ÿ SBp�C�g1=2 ÿ �Fp �19�

or

'�P;C;Zp� � fÿ3J2�dev�Ph0�PTCP�PT ÿ SBp�C�g1=2 ÿ �Fp �20�

A. Bertram/International Journal of Plasticity 52 (1998) 353±374 361



Here we identify Zp � �Fp;SBp 2 Lin � R � Sym:
For the internal variables P and Zp we need evolution equations.

Assumption 3. There exist two rate-independent5 evolution equations

p : Inv� Psym� Lin� Sym! Lin

z : Inv� Psym� Lin� Sym! Lin;

with

P�Pÿ1 � p�P;C;Zp;C
� � �21�

and

Zp
� � z�P;Zp;C

� � �22�

so that

�p�C� � '�P;C;Zp� �23�

holds for the yield criteria associated with all elastic ranges.
We will refer to p and z as the ¯ow rule and the hardening rule, respectively.
The ¯ow rule posesses a plastic potential

� : Lin! R j SC 7! ��SC�

if P�Pÿ1 is parallel to the gradient of �

P�Pÿ1 k gradT ��SC�:

The ¯ow rule is associated to the yield criterion, if the plastic potential equals the
equivalent stress in the yield criterion, e.g.

��SC� � fÿ3J2�devSC�g1=2 �24�

in the Huber±v. Mises case. As a consequence, P�Pÿ1 is in the direction of the
deviatoric part of SC. For generality, however, we will not restrict ourselves to these
special cases in what follows.
The three material functions p, z, and ' cannot be choosen independently, but are

linked together by the consistency requirement, as we will see next.

5In the context of viscoplasticity, these two functions would be rate-dependent. This possibility, how-

ever, has been excluded from the present paper for the sake of simplicity.
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During elastic processes, all internal variables must remain constant. Thus, p and
z contain a switcher that switches their values to zero whenever the yield condition
or the loading condition are not ful®lled. In what follows, we consider exclusively
plastic or yield states, i.e. we assume that Eqs. (17) and (18) are simultaneously ful-
®lled (which implies C�t�� 6� 0�.
Because of the rate-independence, p and z are positive homogeneous of degree one

in their last argument C� . Hence

p�P;C;Zp; lC
� � � l p�P;C;Zp;C

� � �25�

and

z�P;C;Zp; lC
� � � l z�P;C;Zp;C

� � �26�

hold for all positive numbers l, and especially for l :� jC� j. In this case,

P�Pÿ1 � l ��P;C;Zp;C
�� �27�

and

Z� � l Z�P;C;Zp;C
�� �28�

with C� :� C�=l, where � and Z are the restrictions of p and z to tensors of norm 1
in the last argument

��P;C;Zp;C
�� :� p�P;C;Zp;C

�� �29�

and

Z�P;C;Zp;C
�� :� z�P;C;ZpC

��: �30�

During yielding, the material must permanently remain on the current yield limit

0 � '�P;C;Zp��

� tr
@'
@P

� �T
P�

� �
� tr

@'
@CC�
n o

� tr
@'
@Zp

� �T

Zp
�

( )

� tr
@'
@P

� �T
l�P

� �
� tr

@'
@C

C�
n o

� tr
@'
@Zp

� �T

lZ

( )
:

�31�

This equation determines l, and we obtain the consistent ¯ow rule

P�Pÿ1 � �
 A�C� � �32�

and the consistent hardening rule
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Z� � Z
 A�C� � �33�

with

A�P;C;Zp;C
�� :� ÿtr �P

@'

@P

� �T

�Z @'

@Zp

� �T
" #ÿ1

@'

@C
: �34�

In conclusion, within this frame work the elasto-plastic material element is deter-
mined by the following material functions

h0�C�
'�P;C;Zp�
��P;C;Zp;C

��
Z�P;C;Zp;C

��

and initial values for P and Zp. The deformation process can be arbitrarily pre-
scribed. Then by means of the above constitutive equations, we are able to deter-
mine the accompanying P- and Zp- and S-process as a result of integration of the
evolution functions. For numerical purposes, the material model can be considered
as the following scheme.

By the chain rule we can ®nd a piecewise linear incremental form for the stresses

S� � Kp�C� � �35�

where the elastoplastic tangent operator Kp depends not only on the current state
variables P, C, Zp, but also on the direction of C� that determines whether the state
is elastic or plastic. In the former case, Kp coincides with the current elastic sti�ness
tensor grad hp. In the latter case, however, Kp depends also on the hardening rule.
Alternatively to this incremental form for S� , one can also use the ®nite form (13)

for determining the stresses.
The stress-power per unit mass (2) can be split into two parts
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�ÿ1 1=2tr�hp�C�C� �
� �ÿ1 1=2tr Ph0�PTCP�PTC�

� 	
� �ÿ1 1=2tr h0�C0�C0

�� 	ÿ �ÿ1 tr h0�C0�PTCP�Pÿ1P
� 	

� �ÿ1 1=2tr h0�C0�C0
�� 	ÿ �ÿ1 tr SC�
 A�C� �P� 	 �36�

with C0 :� PTCP. If the elastic range is also hyperelastic, the ®rst term is just the
change w0

� of the elastic reference energy. According to the second law of thermo-
dynamics, the second term is dissipative, i.e. never negative (Acharya and Shawki
1996, Bertram 1999).

3. Crystal plasticity

Since the early nineteen-twenties, we know that plastic deformations in crystals at
room temperature take place as shears in crystallographic slip-systems. The defor-
mation of the lattice determines the stresses, such that a distinction between material
and lattice deformations is natural for crystals. However, we will not go as far as
Krawietz (1986) and Rubin (1996) who consider the lattice space as a primitive
concept. In our context, the notion of a lattice is just an illustrative means for the
action of the plastic transformation, as we will see later.
A slip system is a pair d�; n

�f g of a director d� 2 V and a covector n� 2 V � which
indicate the direction and the normal of the plane, respectively, in which the crys-
tallographic slip occurs. Here, V * stands for the dual space of V , and � is an index
for the particular slip system. As before, we prefer a material description. Thus, d�
and n� indicate crystallographic directions in the (arbitrarily chosen) reference
placement.
A slip-system remains inactive, as long as the resolved shear stress

��s :� tr�SCd� 
 n�� �37�

remains (in absolute value) below the critical resolved shear stress ��c of that parti-
cular slip system. The Schmid-law is the associated yield criterion

�p�C� � max
�
j��s j ÿ ��c � max

�
jtr�SCd� 
 n��j ÿ ��c

� max
�
jtr�Ph0�PTCP�PTCd� 
 n��j ÿ ��c :

�38�

If only one slip system is activated (single slip), the Schmid criterion serves as a
plastic potential and the associated ¯ow rule is

P�Pÿ1 � ÿ
 �� gradT �s�SC� � ÿ
 ��d� 
 n� �39�

with a real number 
 ��. In the case of multiple slip, we sum the right hand side over all
active slip systems. For each of them, a scalar has to be determined by the consistency
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condition. It is well known that this is only possible if not more than ®ve slip systems
are activated. If this is not the case, an additional selection criterion has to be
established that selects maximal ®ve active slip systems out of the set of those slip
systems where the critical resolved yield stress is reached (Anand and Kothari, 1996,
Miehe and SchroÈ der, 1998).
In the simplest case, isotropic hardening is taken into account by a linear ansatz

���c � �
�

ÿ�� _
�; �40�

where ÿ�� describes self-hardening for � � � and latent or cross-hardening for
� 6� �. The vector of the internal variables can therefore be identi®ed by
Zp � �1c ; �

2
c ; . . . ; �nc

� 	
where n is the total number of slip systems, depending on the

speci®c crystal class under consideration.
In the case of rate-independent crystal plasticity, the functional forms for p and z

can hardly be given explicitly. The scheme of the constitutive equations is rather
coupled and implicit. Essentially, however, the state variables P, C, Zp and the
increment C� again determine all increments P� , Zp

� , S� .
In most crystalline materials, the elastic range is rather small so that a linear

elastic law is justi®ed

hp�C� � Kp�Cÿ Cup� �41�

with the material constants

Kp : the fourth-rank elasticity tensor
Cup : a symmetric second-rank tensor.

The latter can be interpreted as a stress-free con®guration. The isomorphy condi-
tion (13) between the current and the elastic reference law takes the form

Kp�Cÿ Cup� � PK0�PTCPÿ Cu0�PT �42�

which serves to determine Kp and Cup by their reference values K0 and Cu0 via the
plastic transformation P. For crystals, the elastic behavior must be expected to be
anisotropic. It is therefore convenient to use a crystallographic vector base fgpjg and
its dual fgjpg to represent

Kp � Kijkl
p gpi 
 gpj 
 gpk 
 gpl �43�

and

Cup � Cupij g
i
p 
 g j

p: �44�

By de®ning a crystallographic reference base by fg0j :� Pÿ1gpjg and its dual
fgj0 :� PTgjpg and exploiting the isomorphy condition, one can easily show that Kp
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and Cup have the same components with respect to fgpjg and fgjpg as K0 and Cu0

have with respect to fg0jg and fgjog. In other words, P transforms the anisotropy
directions being characteristic for K0 into those of Kp. Or, P can be interpreted as an
identi®cation of material line elements in a crystalline point that play the same role
for the anisotropic elastic behavior in two di�erent elastic ranges. Numerical appli-
cations of this model in (a slightly rate-dependent version) to single and poly-
crystalline materials are given in Bertram and Kraska (1995a,b), Bertram et al.
(1997a,b), Kraska and Bertram (1996), BoÈ hlke et al. (1997).

4. The multiplicative decomposition

Most theories in the ®eld of ®nite plasticity are based on the concept of inter-
mediate placements.6 The assumption behind this concept is that at any instant a
material point can be (at least locally) unloaded via an elastic process. As a result,
we obtain a stress-free or released placement called intermediate. Clearly, the inter-
mediate placement can be subjected to a rigid body motion without generating
stresses according to the usual invariance requirements. We will next show how this
notion of an intermediate placement can be imbedded into the present framework.
Up to now, the reference placement did not play an important role. It was chosen

arbitrarily once and for all. From now on, however, we restrict this freedom and
choose the reference placement in such a way that the elastic reference law of our
material point gives zero stresses

h0�I� � 0 �45�

This assumption is not very restrictive, as we do not demand that the material can
always or even once reach this state via elastic unloading. From the isomorphy
condition (13) then

hp�PÿTPÿ1� � 0 �46�

holds for any elastic range, i.e. PÿT Pÿ1 describes the current stress-free con®gura-
tion, again without saying that it is necessarily contained in the current elastic range.
Indeed, there are materials where this is not always the case (because of a strong
Bauschinger e�ect7).
If we identify the current local intermediate placement by

Fp :� Pÿ1 2 Inv �47�

6In using the word placement instead of con®guration, we follow Noll (1972). A con®guration is an

equivalence class of placements that di�er only by a rigid body motion. We believe that these expressions

come closer to the common meaning of these words. If linearized in a material point, the deformation

gradient is a local placement, whereas the right Cauchy±Green tensor describes the local con®guration.

Consequently, we will speak of reference and intermediate placements instead of con®gurations.
7Mandel (1974) considers this situation and calls it a virtual unloading.
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and

Fe :� FFÿ1p 2 Inv �48�

as the plastic and elastic parts of the deformation gradient F, we obtain the multi-
plicative decomposition

F � FeFp �49�

(see Lee 1969, Mandel, 1971, 1973, 1974). We determine the Cauchy stress by (1, 4,
13, 47) as

T � Fhp�C�FT � Feh0�Ce�FT
e �50�

with Ce :� FT
e Fe. For F � Fp, C coincides with PÿTPÿ1 and, thus, T � 0. Hence

Ce � I describes a stress-free con®guration. If the inelastic reference law is derived
from a potential w0, then

T � 2�Fe grad w0�Ce�FT
e : �51�

By assuming that P is unimodular, we ®nally obtain

T � 2 det�Fe�ÿ1�0Fe grad w0�Ce�FT
e �52�

which corresponds to Eq. (18) of Lee (1969). In this paper, however, Lee postulated
the symmetry of Fe. This can be achieved by the polar decomposition of

FP �: VeRe �53�

into Ve 2 Psym and Re 2 Orth�. By de®ning instead of Eqs. (47) and (48)

Fe :� Ve �54�
and

Fp :� ReP
ÿ1; �55�

Eq. (49) again holds. Then, instead of (52) we obtain

T � FeReh0�RT
eCeRe�RT

e F
T
e : �56�

If h0 is an isotropic tensor function, this expression coincides with Eq. (50). This is
the case if the elastic reference law h0 describes isotropic elasticity with respect to
some undistorted isotropic con®guration Ce � I.
Under these identi®cations, however, Fp (or its orthogonal part) varies even under

rigid body rotations. In our theory this has no in¯uence, as our (material) variables
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remain unaltered under rigid rotations. Moreover, the symmetry of Fe is not needed,
as its orthogonal part does not enter Ce by de®nition.
Let us turn back again to the general anisotropic case and the identi®cations Eqs.

(47) and (48). If we calculate the second Piola±Kirchho� tensor with respect to the
(local) intermediate placement we obtain

T2PK
i :� det�Fe�Fÿ1e TFÿTe �

�0
�
h0�Ce� �57�

or

T2PK
i � 2�0 grad w0�Ce� �58�

in the case of hyperelastic ranges. This corresponds to Mandel's suggestion. Note
that this equations does not involve any plastic variable anymore, but only a sym-
metric elastic con®guration tensor. Moreover, the elastic reference law h0 or the
reference potential w0 are independent of the plastic deformation. However, the
underlying intermediate placement, which Mandel called isoclinic, continuously
varies in time and space during plastic processes. In Mandel's format, neither Fp nor
Fe are assumed to be symmetric (in contrast to Lee's). However, only the symmetric
part of Fe enters Eq. (57). The isoclinic placement cannot be arbitrarily rotated. It
can only be modi®ed by arbitrary symmetry transformations from the symmetry
group of h0, same as our plastic transformation.8

It was Green and Naghdi's 19719 objection against the multiplicative decomposi-
tion that ``for objectivity requirements the intermediate con®guration should be
rotatable under any time-dependent orthogonal transformations (Euclidean trans-
formation).'' Within the present context we clearly see that this postulate is too
strong and not backed by objectivity requirements. Instead, it would lead to (elastic)
isotropy, a property which has nothing to do with objectivity. However, the isoclinic
placement can be rotated by any constant orthogonal tensor Q. We would again
obtain an isoclinic placement with elastic law

h0�C� � Q h0�QTCQ�QT: �59�

If the elastic law is isotropic, this transformation does not a�ect the elastic law
h0 � h0.
Mandel's format contains full generality with respect to material anisotropy, and

is therefore capable to describe crystal plasticity (in contrast to Lee, who restricted
himself to the isotropic case).
It is worth noting that with their choices of elastic laws Eqs. (52) and (58), both

Lee's and Mandel's theories ful®ll the isomorphy requirement of our Assumption 2.
Indeed, there are few theories in the ®eld of plasticity that do not use this property
(see Krawietz, 1986; Krempl, 1994).
By using Eqs. (47)±(49), we obtain for the velocity gradient

8This argument can be found in Dashner (1986) after Eq. (15).
9See also Casey and Naghdi (1980).
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L � F�Fÿ1 � Le � Lp �60�

with the de®nitions of Lee

Le :� Fe
�Fÿ1e �61�

and

Lp :� FeFp
�Fÿ1p Fÿ1e � ÿFP�Pÿ1Fÿ1 �62�

the latter being the push forward of ÿP�Pÿ1. None of them is a gradient (not even
under homogeneous deformations). As P is non-symmetric in general, none of the
two parts is symmetric in general. Clearly, neither the skew part of Le nor of Lp

directly contribute to the stress-power (2). However, the non-symmetric part of P
enters the elastic law for the stresses through (13) and thus does indirectly in¯uence
the stress power.
If we plug the evolution law for the plastic transformation into (62) we obtain

Lp � ÿF p�P;C;Zp;C
� �Fÿ1 �: lp�P;F;Zp;F

� � �63�

so that Lp is fully determined by a material law. Similarly, the same holds for

Le �: le�P;F;Zp;F
� � �64�

We see neither a theoretical nor a numerical advantage in decomposing Lp into its
symmetric and skew parts (the latter is often called plastic spin). A single evolution
equation gives both parts simultaneously, as we already have exampli®ed for crystal
plasticity.

5. The additive decomposition

Another constitutive decomposition of the deformations into elastic and plastic
parts was suggested by Green and Naghdi (1965) with respect to Green's strain
tensor

EG :� 1=2�Cÿ I� � Ee � Ep 2 Sym �65�

In the original work, Ep is introduced as a primitive concept, and Ee de®nded as the
di�erence EÿEp. The stress law is assumed to be

T2PK � g�Ee;Ep� 2 Sym �66�

for the 2. Piola±Kirchho� tensor with respect to an (arbitrary) reference placement.
Later we ®nd [Casey and Naghdi, 1980, Eq. (2)]
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Ep :� 1=2�FT
pFp ÿ I� 2 Sym �67�

Consequently,

Ee � FT
p

1=2�FT
e Fe ÿ I�Fp 2 Sym �68�

By using the same identi®cation Eq. (47) as before, we get

Ep � 1=2 �PÿTPÿ1 ÿ I� �69�

which has zero value for the current unloaded con®guration. By this identi®cation
we obtain

T2PK � �0� Fÿ1p h0�FÿTp �2Ee � 2Ep � I�Fÿ1p �FÿTp

�: k�Fp;E
e� �70�

which is not a special form of Eq. (66). Again we see that a symmetric variable such
as Ep is not su�cient to describe full anisotropy. Only in the isotropic case, Fp can be
taken as symmetric and Eq. (70) can be brought into the form Eq. (66) by sub-
stituting

Fp � �2Ep � I�1=2 2 Sym �71�

In this special case, however, Eq. (66) is more general than the speci®c form Eq. (70),
as our Assumption 2 does not automatically hold. If it does hold, as is commonly
assumed, Eq. (66) must have the form Eq. (70).

6. Conclusions

Our format for the elasto-plastic model is based on the following essentials:

. the material is rate-independent;

. deformation processes are the input variables, stress-processes are output-
variables;

. the material has elastic ranges with isomorphic elastic laws.

The latter assumption is considered as fundamental for most of the theories in the
®eld, although seldom mentioned. Based on these assumptions, an elastic-plastic
model has been established that consists of (i) the elastic reference law h0, (ii) the
¯ow rule �, (iii) the hardening rule Z, and (iv) the yield criterion '. The entire
theory is formulated in material or Lagrangean variables and, thus, identically ful-
®lls the principle of material frame-invariance. With this general framework, we are
able to imbed the main theories in the ®eld and to investigate their validity and
generality.
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The use of reference placements for such materials and, as a consequence, that of
deformation gradients with respect to them, gave rise to a lot of misunderstanding
and confusion in ®nite plasticity. However, Noll (1972) has shown that material
theory can be concisely formulated without reference placements (intrinsic descrip-
tion). For the present theory only one reference placement has been used which can
be arbitrarily chosen as it does not play any particular role. Instead of deformation
gradients we used the con®guration tensor C which is immune to all rigid rotations
of the body and changes of observer.
We also did not make use of the notion of elastic unloading into intermediate

placements, which caused more confusion than insight in the past because of unde-
®ned rotations. Neither do we use constitutive decompositions into elastic and
plastic part of strains or strain-rates. The split of the rate of our plastic variable
P�Pÿ1 (or likewise of Lp), into symmetric and skew parts does not bring any bene®t,
as one single evolution function for the entire variable is needed.
Because of certain symmetry assumptions, Lee's theory is limited to isotropic

behavior. The same result holds for Green and Naghdi's theory, although quite
di�erent in nature. Only Mandel's format covers full anisotropy. As a general result
we can state that

. in the anisotropic case a non-symmetric internal variable (P, Fp, etc.) is needed,
and, consequently, an evolution law which also determines the skew parts of its
rate, i.e. the plastic spin;

. in the isotropic case, however, the orthogonal parts of the plastic variable and
the skew parts of their rate forms can be ruled out.
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